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ABSTRACT

Educational research has shown that self-beliefs can have
profound influences on learning behaviour and achievement.
It follows, then, that beliefs about the nature of
programming aptitude (e.g., students’ mindset) and the way
in which individuals perceive themselves as programmers
(e.g., students’ self-concept) could also have a salient impact
on programming practice behaviour and the development
of programming expertise. However, in order to test this
hypothesis, a valid and reliable measurement instrument is
needed. This paper draws upon the Control-Value Theory
of Achievement Emotion to assemble such a measurement
instrument. An evaluation of the proposed measurement
instrument with three cohorts of undergraduate computing
students (N = 239) then demonstrates that reliability
and construct validity are adequate, while the concurrent
validity of the conceptual framework is satisfactory. This
suggests that the measurement instrument is suitable
for further research into students’ self-beliefs within
the introductory programming context. However, it is
important to note that this work represents only a first step
and further validation is required to establish whether the
measurement instrument is valid across different contexts
and populations.
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1. INTRODUCTION

Reliable and valid measurement is critically important
in educational research. Variables of interest should be
clearly defined and measured with minimal error in order
to make meaningful conclusions from an analysis [8, 44].
However, there is not a strong history of instrument
development and validation in computer science education
research. Two systematic reviews of the literature found
that the quantitative research in the field would benefit
from improvements in methodology and reporting [37, 46].
Of particular interest, only 1.5% of articles published
between 2000 and 2005 reported adequate psychometric
information to support the validity, the reliability, and the
generalisability of their claims [37].

A number of measurement instruments have since been
developed and evaluated. For example, the Foundations
of CS1 Test (FCS1) assesses students’ performance in the
cognitive-domain of introductory computing [45]. However,
few instruments address the affective-domain of learning
computing (e.g., attitude development [9]). In particular,
there is a need to explore the emotive aspects of learning
computer programming as, for some students, programming
invokes strong negative feelings [19, 24, 38] and shapes
their self-beliefs in counter-intuitive ways [22]. This is
important to consider because self-beliefs play an important
role in academic development [5, 26]. As an example,
beliefs about the nature of programming aptitude, extending
Dweck’s mindset theory (see [7, 10, 11, 32, 42]), can lead
to significant differences in the time that students report
practising programming [41]. Nevertheless, to pursue this
line of research, a valid measurement instrument is needed.

As such, this article will propose one such measurement
instrument and will then address the research question: is
the proposed measurement instrument reliable and valid?
The following section will highlight a number of challenges
encountered in introductory programming and will then
situate these challenges within the Control-Value Theory of
Achievement Emotions to illustrate the potential role which
students’ self-beliefs may play. Drawing from the theory,
a parsimonious set of key variables is then identified to
include in the measurement instrument. The next section
then describes how the proposed measurement instrument
was assembled. This leads into an evaluation with three
cohorts of undergraduate computer students. The paper
then closes with a brief discussion of the potential uses of the
measurement instrument, its limitations, and a conclusion
on its adequacy for future research.



2. BACKGROUND

2.1 Challenges in Programming Education

Programming is a craft which many would seem to find
challenging to learn [21]. Notwithstanding practices that
have been shown to improve retention and success [36],
failure rates can be high [4] and there is a history of
poor outcomes in the higher education context [17, 45].
The reasons for these poor outcomes are complex and
multifaceted (see [3]). However, for this reason, introductory
is considered a challenge for computer science education
research [17, 30].

A key issue can sometimes be the amount and the quality
of practice that novice programmers engage in [40]. This
is because the discipline can require a substantial level of
deliberate practice to master [13, 51]. That is, practice
which is ongoing, focused, reflective, and situated at the
right level of challenge for any individual student [13]. This
type of practice, however, is inherently uncomfortable and
demands that learners remain motivated.

Despite the best efforts of instructors (e.g., through
encouraging and motivating students [20]), learners
regularly report negative experiences when they engage with
programming tasks [22, 38]. Some authors describe this
phenomenon as programming trauma [19] and, to reinforce
such striking language, there is some evidence which
indicates that the type of task anxiety these experiences
invoke are related to the activation of brain regions
associated with visceral threat detection and pain [27].
Another concern is evidence suggesting that such affective
factors worsen over a course of instruction [31, 41].

With this being the case, the emotions that learners
feel may prompt them to reflect on themselves and their
ability in several different ways [22]. Potentially, learners
may start to believe that they no longer have the time or
the motivation to overcome these challenges as they cannot
envision success in the future [23]. In other words, learners
may change their self-beliefs based on their experiences,
through a process of self-appraisal, potentially diminishing
the way that they identify with programming as a discipline
and disengaging with deliberate forms of practice [35, 40].

2.2 The Control-Value
Achievement Emotions

A framework that considers the role of self-beliefs
and emotions in learning is the Control-Value Theory of
Achievement Emotion [33, 34]. In this framework, students’
self-appraisal of ongoing achievement activities, and of
their past and future outcomes, are of key importance.
This is because the emotions that they experience during
a particular task will depend upon whether they feel in
control of the outcome and that the outcome is subjectively
important to them.

These emotions then influence academic engagement and
performance through the model shown in Figure 1. The
model proposes that instruction and support have an
influence on the way in which individuals form the control
and value appraisals. These appraisals then shape the
specific achievement emotions that students may experience
based on whether they feel they can control activities and
outcomes that are subjectively important to them. These
emotions then have a direct impact on self-regulated learning
and performance. Specifically, emotions seem to influence

Theory of

cognitive resources, use of strategies, and dependence on
external regulation of learning [33]. The overall model is also
reciprocal in nature, such that outcomes can shape emotions
while both emotion and performance shape the way students
form their self-appraisals. In some cases, instruction and
support may also respond to student needs. In particular,
offering a range of interventions which could influence any
part of the model. As this process continues over time, it
could have substantial impact on learning behaviour and
subsequently performance; as evidenced through the known
co-variance between self-efficacy beliefs and success [47, 50].
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Figure 1: Overview of the Control-Value Theory
of Achievement Emotion with an Embedded
Conceptual Framework (Adapted From [33, 34])

As each component of the framework represent a broad
range of different constructs, a parsimonious conceptual
framework has been embedded within the model. This
example has been derived from factors hypothesised to
influence student programming practice [40] and illustrates
how learning activities and feedback influence students’ self-
beliefs. Namely: self-concept, which is is understood to be
a composite of “self-perceptions that are formed through
experience with and interpretations of one’s environment”
[29]; interest, which is the extent to which an individual
enjoys engaging with a set of tasks; and mindset, based on
Dweck’s [10] notion of mindsets. That is, students have
a growth mindset, where they believe their capacities can
be developed through practice, or students have a fixed
mindset, where they believe their capacities are natural,
inherent qualities. These, in turn, influence task anxiety
which, consequently, may encourage avoidance behaviour.

2.3 Proposed Conceptual Framework and
Instrument Assembly

To validate the framework and test such a hypothesis,
it is necessary to develop an appropriate measurement
instrument. Therefore, in line with the proposed conceptual
framework shown in Figure 2, items for the key variables
were assembled.
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Figure 2: A Conceptual Framework for Enhancing
Students’ Programming Practice



The measurement model for the proposed measurement
instrument consisted of four constructs: Programmer
Self-Concept (PSC); Interest in Software Development
(INT); Programming Anxiety (ANX); and Mindset Towards
Programming Aptitude (APT). Additionally, in order
to ensure appropriate discriminatory power between
constructs, such as differences between self-concept and self-
efficacy [6], items relating to software debugging task self-
efficacy are also included (DSE). As existing instruments
target similar constructs of interest, items were drawn from
the literature and adapted to the introductory programming
context. A self-report of programming practice behaviour,
for the purpose of establishing the concurrent validity of the
proposed framework, is also included (see [41]).

The construct debugging task self-efficacy captures
learners’ cognitive self-assessments of whether or not they
are confident in their ability to write and debug simple
programs.  This is based on the theoretical construct
proposed by Bandura [1], as it relates to how self-
assessments influence behaviour change. The items for
this construct were created using guidelines regarding the
domain-specificity of self-efficacy and its association with
particular criterial tasks.

The construct of programmer self-concept has some
conceptual overlap with debugging self-efficacy, however
there are a range of theoretical and empirical differences
[6, 14]. It represents a composite of self-perceptions
that one can be a good programmer, which is “formed
through experience with and interpretations of one’s
environment”. This construct drives the affective elements
of being a programmer as opposed to a cognitive assessment
of success at programming because “self-concept better
predicts affective reactions such as anxiety, satisfaction, and
self-esteem, whereas self-efficacy better predicts cognitive
processes and actual performance” [6]. The items for this
construct were adapted from scales used by Ferla et al. [14]
and Eccles & Wigfield [12]. These focus on the ability-belief
component of self-concept.

The construct for interest in software development
measures the extent to which an individual enjoys engaging
with programming-related activities. This construct is
believed to have a reciprocal relationship with self-concept,
resulting in the pursuit of more achievement experiences in
a domain [16]. The items for this construct were adapted
from the scale used by Wigfield et al. [48], focusing on the
enjoyment aspect of interest.

The programming anxiety instrument construct measures
the self-reflected state of experiencing negative emotions,
such as nervousness or helplessness, while writing and
debugging programs. The items were drawn and adapted
from the worry-component of the instrument used by
Wigfield and Meece [49].

The mindset towards programming aptitude instrument
construct represents the strength of a learners’ belief in the
notion of a fixed programming aptitude (e.g., aptitude is
inherent and cannot change). The items were drawn from
Dweck [10].

These items were then put together as a 5-point Likert
instrument, with each item rated from strongly disagree to
strongly agree. Each item was reviewed by 2 colleagues and
a small convenience sample of undergraduate students, and
revised to improve content validity and readability. This
resulted in the instrument shown in Table 1.

3. METHOD

In order to evaluate the proposed measurement
instrument, the psychometric properties are examined.
Namely, based on the recommendations of Straub et al.
[43] and other authors (e.g. [8, 44]), reliability and validity
need to be established in order to deem a measurement
instrument adequate. This involved a trial of the instrument
with three cohorts of students at the conclusion of their first
programming course and an analysis of their responses using
a confirmatory factor analysis technique (see [18]).

3.1 Data Collection

The sampling frame for each cohort was set to all students
who had submitted at least one assignment or code review
to ensure participants had indeed attended the course.
Minimum sample size requirements were calculated using
Cochran’s formula for continuous data with finite population
correction and adjusted for anticipated non-response [2].

A random sampling procedure was used to select
participants.  Data was collected in three rounds: a
paper-based survey was distributed to all students in the
lab environment (unselected cases are not considered in
analysis); a digital version was then advertised on the virtual
learning environment and email alerts were distributed to
those whom had not responded to the paper-version; after
ten days, an additional series of follow-up emails were
distributed to the non-respondents. All participants were
offered an opt-out for further communication at each stage.

From 126, 115 and 98 invitations for each respective
cohort, 91, 84, and 64 responded. This represents an overall
response rate of 70%, noting that 34 cases in 2011-12, 30
cases in 2012-13, and 21 cases in 2013-14 were classified as
late respondents. This is because their response was elicited
after considerable follow-up during a third round of data
collection.

3.2 Participants

Participants were all first undergraduate students
following the sequential pathway for either ‘Computer
Science’ or ‘Business Computing’. The descriptive statistics
show that less than 20% of the respondents were female,
while the average age was 20 years, with approximately 15%
respondents being mature students (over the age of 23 at
entry).

Admission to the pathway required at least 300
UCAS Points (University & College Admission System
Points), with a strong preference for STEM subjects
(science, technology, engineering, and mathematics). Prior
programming experience was not required. However,
students without a relevant STEM qualification, or the
required points, could opt to pursue a relevant foundation
course.

During the introductory programming course, students
would learn object-orientated design and the fundamental
constructs of the Java language. This was conducted
through a sequence of laboratory-based assignments and a
collaborative project. The assignment for the 2011-12 cohort
was a website and a lab-based programming examination.
The assignments for the 2012-13 and 2013-14 cohort
were robot scripting tasks, where students would program
robots to complete activities such as maze navigation or
communication in Morse Code. These assignments were
examined by code review and oral viva.



4. DATA ANALYSIS

According to Straub et al. [43], there are three main
forms of validity and reliability which are important in
instrument development: content validity, construct validity
and internal reliability. = Content validity is the level
at which items used to measure a construct reflect the
meaning of the construct (and breadth of possible items
which could represent the construct) to which the items
will be generalised. Construct validity is the form of
validity that deals with the degree to which items are
an effective measure of a theoretical construct. This is
often sub-divided into convergent validity and discriminant
validity as evidence for both imply construct validity [18].
Convergent validity refers to the level at which multiple
items which theoretically should be related are actually
related. Conversely, discriminant validity assess the extent
to which items which should be unrelated are actually
unrelated.  Reliability refers to the extend with which
parallel items are consistent in what they are intended
to measure (e.g. responses to a set of related items
are internally consistent). Concurrent validity is also a
consideration in cases where constructs should be related.
That is, a construct is related to, or able to predict, another
in the same instrument.

The data was analysed in PASW v20 and AMOS 21. All
data was analysed. Items under consideration were modified
to reflect feedback received from the 2011-12 cohort (see
[39]), as such items were analysed on a pair-wise basis. This
section follows the factor analysis procedure outlined by Hair
et al. [18].

4.1 Descriptive Statistics

Descriptive statistics for the three samples are shown in
Table 1 on the following page. This shows that learners
tended to report high DSE, PSC, and INT. Many reported
low ANX and, as indicated by low APT, many endorsed a
growth view of programming aptitude.

Some analyses require the distribution of the data to
follow a normal distribution. This was verified through
an examination of skew and kurtosis, with skew indices
greater than 3.0 and kurtosis indices greater than 10.0 often
indicative of severe non-normality [25]. Table 1 shows these
indices are within these guidelines.

4.2 Measurement Model

To verify the structure of the items for the proposed
measurement model (i.e., checking that it was appropriate
to group variables together into meaningful constructs),
the proposed five-construct solution was evaluated using
maximum-likelihood confirmatory factor analysis. As
advised in [18], several fit indices were used to determine
fit. One APT item was eliminated at this stage due to a
low regression weight. Modifications were also made based
on the modification indices to improve overall fit. These fit
indices for the final set of items, shown in Table 2, indicate
that the hypothesised model was ‘not a bad fit’ to the data
(i-e., accepting the null hypothesis of having no significant
difference between the prediction and the data).

This suggests that the expected model was adequately
reflected by the structure of the data. However, it should
be noted that alternative models with superior fit could still
exist. An exhaustive review of alternative candidate models
is beyond the scope of this article.

Table 2: Fit Indices
Measurement Model

and Criteria for the

Fit Index Measurement  Adequate Fit

Model Criteria [18]
X2 (df = 153) 267.312 N/A
X2 /df 1.747 < 3.00
p 0.000 > 0.05
NNFI 0.950 < 0.90
CFI 0.960 > 0.90
SRMR 0.044 < 0.08
RMSEA 0.056 008

Note: df: degrees of freedom, NNFI: non-normed fit indew, CFI: comparative fit indes,
SRMR: standardised root mean square residual, RMSEA: root mean square error of
approzimation.

Table 4: Regression Results for Relations in the
Proposed Structural Model

. . . Standard  Critical
Relationship Estimate Error Ratio p
APT — ANX 0.310 0.084 3.685 < 0.001
INT — ANX -0.020 0.149 —0.135 0.893
PSC — ANX -0.534 0.085 —6.301 < 0.001
ANX — PRACT -2.335 0.389 —6.004 < 0.001

Note: APT: programming aptitude mindset, PSC: programming self-concept, ANX:
progra wwiety, PRACT: freq of progr g practice.

4.2.1 Reliability

Reliability is assessed through examining the Composite
Reliability (CR) of each construct. Values close to 1.0
indicate reliablilty, with 0.7 considered minimal [18]. Table
3 shows that the values are consistently above 0.7. Thus,
the measurement instrument was reliable with this sample.

4.2.2  Construct Validity

In order to establish construct validity, each construct
should demonstrate convergent and discriminant validity.
Adequate convergent validity is demonstrated by an Average
Variance Extracted (AVE) greater than 0.5 [18]. Table
3 shows all values were above this threshold. Adequate
discriminant validity is demonstrated by the \/AVE being
greater than any correlation with another construct [15].
Table 3 shows that the \/AVE of each construct was greater
than its most significant correlation with another construct.
Subsequently, these results imply construct validity.

4.2.3 Concurrent Validity

Adequate concurrent validity is established through a
cursory examination of the correlation matrix and an
examination of hypothesised relationships in a structural
model. Table 3 does not show any anomalies within
the correlation matrix. As such, the proposed structural
model was assessed along with a self-report measure of
programming practice. The results, shown in Table 4, reveal
that most of the expected regression relationships were
statistically significant. However, the regression between
INT and ANX was not statistically significant. This suggests
that either there is no relationship or the size of effect
is small. Nevertheless, with the exception of INT, the
conceptual model appears to be valid.



Table 1: Mean, Standard Deviation, Skewness and Kurtosis of the Instrument Items

Item Item Description M SD Sk K
Debugging Self-Efficacy
DSE1 I am confident that I can understand Java exceptions (e.g., NullPointerException) 3.65 0.96 -0.27 -0.61
DSE2 I am confident I can solve simple problems with my programs 3.48 1.02 -0.18 -0.55
DSE3 I am confident I can implement a method from a description of a problem or algorithm 3.87 0.98 -0.68 -0.26
DSE4 I am confident I can debug a program that calculates prime numbers 3.68 0.92 -0.35 -0.37
Programming Self-Concept
PSC1 I am just not good at programming 2.44 1.18 0.44 -0.67
PSC2 I learn programming quickly 3.42 1.11 -0.28 -0.58
PSC3 I have always believed that programming is one of my best subjects 3.41 1.17 -0.28 -0.82
PSC4 In my programming labs, I can solve even the most challenging problems 3.34 1.10 0.07 -1.01
Programming Interest
INT1 I enjoy reading about programming 3.66 1.10 -0.44 -0.50
INT2 I do programming because I enjoy it 3.93 095 -0.75 0.13
INT3 I am interested in the things I learn in programming classes 3.72 098 -0.52 -0.39
INT4 I think programming is interesting 3.87 1.03 -0.72 0.67
Programming Anziety
ANX1 I often worry that it will be difficult for me to complete debugging exercises 2.77 1.06 -0.27 -0.85
ANX2 I often get tense when I have to debug a program 2.83 1.18 -0.08 -0.95
ANX3 I get nervous when trying to solve programming bugs 2.82 1.16 0.06 -0.96
ANX4 I feel helpless when trying to solve programming bugs 2.76 1.21 0.11  -0.83
Programming Aptitude Mindset
APT1 I have a fixed level of programming aptitude, and not much can be done to change it 2.08 0.97 0.82 0.35
APT2 I can learn new things about software development, but I cannot change my basic aptitude for programming 2.22  0.95 0.34 -0.59
APT3 To be honest, I do not think I can really change my aptitude for programming 1.90 0.92 0.87 0.23
Note: Pooled Sample (N = 175); M: mean, SD: standard deviation, Sk: skew, K: kurtosis.
Table 3: Construct Validity of the Latent Constructs in the Measurement Model
Loadings Reliability Variance Explained Correlations
Items FL CR AVE MSV  ASV DSE PSC INT ANX APT
Debugging Self-Efficacy 0.868 0.624 0.530 0.418 (0.790)
DSE1 0.776
DSE2 0.808
DSE3 0.696
DSE4 0.870
Programming Self-Concept 0.703 0.655 0.494 0.413 0.703  (0.809)
PSC1 -0.710
PSC2 0.800
PSC3 0.882
PSC4 0.835
Programming Interest 0.842 0.579  0.530 0.363 0.728 0.686  (0.761)
INT1 0.781
INT2 0.847
INT3 0.846
INT4 0.522
Programming Anxiety 0.888 0.664  0.475 0.364 -0.681 -0.689 -0.507  (0.815)
ANX1 0.817
ANX2 0.762
ANX3 0.834
ANX4 0.844
Programming Aptitude Mindset 0.865 0.682 0.262 0.214 -0.431 -0.462 -0.439 -0.512  (0.826)
APT1 0.782
APT2 0.858
APT3 0.836

Note: Values on the diagonal represent \/AVE; FL: factor loading, CR: composite reliability, AVE: average variance explained, MSV: mazimum shared variance, ASV: average shared variance,

DSE: debugging self-efficacy, PSC: programming self-concept, INT: programming interest, ANX: programming anziety, APT: programming aptitude mindset.



S. DISCUSSION

Adequate measurement in computing education research
is important. This is because researchers need to know
whether the measures being selected and used by other
researchers are valid. Straub et al. [43] highlight several key
concerns that researchers may have: Does the instrument
truly represent the essence or content of the target
construct? Is the instrument unidimensional and therefore
only representing the target construct? Has the target
construct been confused with another similar construct?
Are the estimates of the true values of latent constructs
appropriate? Rigorous approaches to measurement address
such questions.

Unfortunately, there has not been a strong history
of reporting psychometric information in the field [37]
and few measurement instruments are readily available
to researchers in the computing education community.
Particularly, measurement instruments that capture
constructs concerned with the affective-domain of learning
computer programming. This may be because developing
adequate measurement instruments can be fraught with
difficulties [43]. However, there is a strong case for pursuing
such work [43, 44] and there is a range of literature which
can be drawn from for support (e.g. [8, 18, 43]).

This paper has assembled one such measurement
instrument and demonstrated that it has adequate
psychometric properties in terms of reliability, construct
validity, and concurrent validity. This instrument focuses on
student self-beliefs in the introductory programming context
and measures five different constructs: programming
aptitude mindset, programming self-concept, debugging self-
efficacy, programming anxiety, and programming interest.

It is interesting to note that interest in software
development did not predict programming anxiety. In
hindsight, other wvalue appraisals such as ‘importance
of programming for future prospects’ may have been
more appropriate for anxiety. Nevertheless, programming
self-concept and mindset towards programming aptitude
were shown to be related to programming anxiety and,
subsequently, programming practice behaviour.  These
relationships have not been firmly established as causal
relationships nor are the directions of the relationship clear.
This suggests that the measurement instrument will be
useful for future work investigating hypotheses raised by the
theory in, for example, longitudinal survey studies.

The measurement instrument may also be useful in
other similar areas of work. There is a vast range
of techniques which educators could attempt to apply
in order to enrich their students’ beliefs, practice, and
performance (see [28]). Using a validated instrument, such
as the one proposed here, will improve the rigor of such
explorations. To illustrate, the authors previously embedded
a fantasy role-play within an e-learning tool to evaluate
its impact on students’ programming self-concept through
a pre-post experiment [39]. The ongoing development
of this measurement instrument will support future
such experiments, increasing confidence that such design
experiments present useful and meaningful conclusions.
Other uses of the measurement instrument may include
educators using the measurement instrument to identify
potential problems in their introductory programming
classes or researchers evaluating student outcomes across
different course designs and cohorts.

6. LIMITATIONS

It should be noted that this work only represents a first
step and future development is needed to overcome a number
of limitations. Most importantly, the instrument has
only been administered to students at a single institution.
Therefore, it may not generalise to populations from other
higher education institutions; particularly, those with a
different culture. Therefore, there is a need to further
validate the tool beyond the institution. Of particular
note, the cross-cultural validity of the measurement
instrument also needs to be considered in addition to the
appropriateness of adapting the framework for different
educational contexts. In its present form, it is not clear
whether the instrument would be suited for a range of
programming topics or age groups.

A small number of items have been included in this
scale to facilitate the collection of data from a large group
with a short questionnaire. As such, it should not be
used to make fine-grain judgements about any individual
student. However, estimation of the true values of the latent
constructs for individual students would likely improve with
additional items.

7. CONCLUSION

Valid measurement is important, however only a small
number of validated measurement instruments are available
to computing education researchers. This limits research
being conducted into educational theory, teaching practice
and the the use of instructional technologies which aim to
enrich beliefs and learning behaviour. The study presented
in this paper contributes to this gap in the literature through
the assembly and validation of a measurement instrument
that could be used for such research. Specifically, for the
investigation of student self-beliefs within the introductory
programming context.

Three administrations of the instrument at the authors’
institution demonstrated that the proposed measurement
model had a good fit to the data. Furthermore, there
was adequate support for reliability, construct validity,
and concurrent validity. However, there are a number of
limitations. Critically, the results may not generalise to
different age-groups, cultures or educational contexts.

Future work will involve further validation of the
conceptual framework in addition to an examination of
appropriate descriptive statistics across a range of students
and contexts. This will support further research into
teaching practice and instructional technology used in
introductory programming.
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